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1.  INTRODUCTION

This report describes the auroral spacecraft charging model implemented in the Nascap-2k
spacecraft charging computer code. Drs. Victoria A. Davis and Myron J. Mandell developed and
implemented the flux and charging models, with some assistance from Gary A. Jongeward with
the auroral environmental flux model. The use of the Nascap-2k auroral charging model is
described in Chapter 2. The formulas used to describe the surface fluxes are given in Chapters 3
through 7. Chapter 8 compares the results of sample calculations with those computed using
other auroral spacecraft charging codes.

2.  USING NASCAP-2K

Choosing “Polar” Orbit and “Surface Charging” Problem Type on the Problem tab (Figure 1)
specifies spacecraft charging calculations using an auroral environment. The charging currents
can be computed using either “Analytic Currents” (a strictly analytic description of the currents
described in the sections Incident electron flux and Analytic model of incident ion flux below) or
“Analytic Electron & Tracked Ion Currents” (where the electron current is computed analytically
and the ion current is computed by particle tracking). Ion currents from particle tracking require
“Potentials in Space” and “Surface Currents” calculations. Space potentials can be computed
with either “Analytic Space Charge” or “Self-consistent with Jon Trajectories.” Only the low
energy component of the plasma is used in the computat:on of space charge, as the high energy
electrons contribute only a low density of order 10° m
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Figure 1. Problem Tab for an Auroral Charging Calculation with the Charge Density Computed From
Tracked Ions and Barometric Electrons.

The components of the environment are specified on the Environment Tab. (Figure 2)
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Figure 2. Environment Tab for Auroral Charging.

Only species with positive charge are used in the computation of the tracked ion flux component.
If the space potentials are computed with analytic space charge, the ion flux is computed using
the parameters given on the “Surface Currents” subtab of the “Particles” tab. If the space
potentials are computed self-consistently with ion trajectories, the ion flux is computed using the

parameters given on the “Ion Densities” subtab (Figure 3) of the “Particles” tab.

Figure 3. Ion Densities Subtab of the Particles Tab.
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Figure 4. Advanced Screen of the Particles Tab. Calculations Self-Consistent with Ion Densities Require
Extra Particles Created Either as a Thermal Distribution or by Subdivision.

The initial potentials are specified in the same way as for geosynchronous charging calculations.
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Figure 5. Initial Potentials Tab.

The charging timesteps are specified on the charging tab (Figure 6) in the same way as for a
geosynchronous charging calculation. Computing surface charging self-consistently with tracked
jons is an iterative calculation. In this case, the number of iterations is given in the Iteration box
on the Space Potentials Tab (Figure 7) and the number of timesteps on the Charging tab is
ignored. One timestep is used per iteration.
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Figure 6. Charging Tab.

- Cliarge de - " fmaraton -

: Sumber of Rerstions: 140

...Aeretione__} Frae ol polertial’ Frge. ofts denshy
i “teian 500 1.0

b i st i e A i

Figure 7. Space Potentials Tab. Auroral Charging Calculations Using Tracked Ions Use the Iteration
Parameters in the Space Potentials and Ion Density(Self-Consistent Ions Only) Calculations.

The script used to specify an auroral charging calculation with “Analytic Currents” is the same
as the script used to specify a geosynchronous charging calculation except for the environment
definition. The script used to specify an auroral charging calculation with “Analytic Electron &
Tracked Ion Currents” is similar to that for a LEO surface charging calculation using “Tracked
Particle Currents.” The calculation is initialized with “Charge Surfaces,” “Potentials in Space,”
“Create Particles,” and “Track Particles,” commands. The sequence is repeated “Number of
Iterations” times, ending with a “Potentials in Space” command. For “Self-consistent with Ion
Trajectories” charge densities, the “Traj_Ion” command is included in the sequence before each



“Potentials in Space” command after the first one. The first Charge Surfaces command has the
same subcommands as an “Analytic Currents” calculation, except the “DoOneTimeStep”
subcommand is used in place of the “DoTimeSteps” subcommand. A “UseTrackedlons™
subcommand specifies that the most recent tracked surface current values are to be used as the
jon flux. A “FieldsFromFile” subcommand specifies that the electric fields used to compute the
suppression of secondary electrons and photoelectrons are to be read from the database rather
than computed by the BEM module. The BEM module assumes no space charge, while the
Potentials in Space module of Nascap-2k (which writes its results into the database) computes
electric fields using the specified model for space charge.

3. INCIDENT ELECTRON FLUX

All species of the low energy plasma are described by a Maxwellian distribution. The high
energy electrons are described by a Fontheim distribution, which has three components, specified
by the net current in each component. The Maxwellian component describes a broad electron
distribution, the Gaussian component describes the “inverted-V” part of the spectrum, and the
Power Law component describes the secondary and backscattered electrons from interactions
between the Gaussian beam and the rest of the plasma. The Power Law component only
contributes at energies between specified lower and upper cutoffs. The effective density of each
component is the expectation value of the distribution function.

The electron differential flux (m'2 s7evlis specified by

Flux (E) = r—

[

E E E
—nexp| —— |+ nC,,. E -
xr’( e) Comae eXP( 5

max

E__-EY
] + anaussE CXp _[_E%—J + ncpowerE_a (1)

where n and 0 are the density and temperature of the low energy ionospheric plasma, e and m,

are the electron charge and mass, and the s, Omax, Egauss, A, and o are constants. Figure 8 shows
the electron flux for an auroral environment.
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Figure 8. Fontheim Electron Spectrum Using Parameters Shown in Figure 2.



4. ANALYTIC MODEL OF INCIDENT ION FLUX

The ion flux density to each surface is assumed to be the orbit-limited ion flux density to a point
on a uniform potential sphere at the same angle relative to the ram direction. The orbit-limited
assumption, which is appropriate to tenuous plasma conditions where the Debye length is tens to
hundreds of meters, is questionable in the auroral case for which the Debye length may be of
order 10 cm. Also, the spherical geometry approximation may be less valid here than for tenuous
plasma environments. Nonetheless, use of this model provides a means of obtaining at least
qualitative results without the effort and uncertainties associated with particle tracking.

We next derive the equations for ion collection by a negatively charged conducting sphere of
radius a in a flowing plasma with ion temperature T. We determine the current density as a
function of angle. All velocities are in units of the plasma thermal velocity

V, = (KT/M)"? @

where k is Boltzman’s constant and M is the ion mass. Energies are measured in units of kT, so
that energy conservation for an ijon at the surface of an attracting sphere is expressed by

%vz—rb:E:%vé 3)

where v is the velocity of the ion, ® the potential energy of the ion at the surface of the sphere, E
the total energy of the ion, and v, the speed of the ion at an infinite distance from the sphere.
The normal current density at a point on the sphere where the unit outward normal is n and is

given by
j=jm)= Jﬂ v-n f,(v,)dv 4)

where f, is the plasma velocity space distribution function and the integration variable is the
negative of the impact velocity at the surface. In the rest frame of the sphere

fo(ve) = (2m)="? exP(_‘lz"(Vo -V )2) &)

where V) is the flow velocity of the plasma.

Now introduce a coordinate system (Figure 9) whose z axis lies in the direction of the normal to
the sphere at the point where we wish to calculate j. Let the x-z plane be determined by this
normal and the plasma flow velocity and let @ be the azimuthal angle between the x-z plane and
the orbital plane of an ion. The angle between the surface normal and the flow velocity is E A
particle launched at the sphere surface with polar angle o has polar angle 6.. at r = ce.




Figure 9. Coordinates Used in the Drifting Maxwellian Ion Current Calculation.

The current j may now be written

/2 2n

j=(m)™"? Jdv0 Jd(x Jd(p Vo v0+2¢)xexp(—-;-( (2)—2v0V0cosw+Vo2))xcosocsinoc (6)
0

where o is the polar angle of the reverse trajectory ion launched from the sphere and v is the
angle between the flow vector and the incident velocity at infinity associated through the

dynamics with the angle o.
Referring to Figure 9, we have
cos\y =cos&cos O, +sinEsinO_ cos@ @)

Integration over the azimuth yields

j=(2n)'3’2Jv0(v§+2<I>)exp(—v§/2) F(v,) dv, ')
0

where

72
F(v0)=27tJ exp( ~V2/2 exp(v V, cos&cos O, ) xI (v, V, sin&sin6_ )cosasinada  (9)
0

and Iy(x) is the modified Bessel function of zero order

2n ‘
(%) === | exp(~xcos g)dp (10)
21 o



The angles at infinity are functions of the launch angle and the energy. The required relations are
determined from the orbit relations in a 1/r potential:

a._ @ ——X l+\/1+ﬂ]§-:—¢25inzoccos(9—60) (11)
r 2(E+®)sin“o o

Measuring orbital angles from the polar axis that is normal to the sphere at the launch point and
setting a = r determines the angle 6y,

cosf, = 2(E+ljsin2 o-1 \ﬁ+i13E—:’iDlsin2 a (12)
d ® v
Setting r = oo gives
cos(ew—90)=—\/l+4—E(g;ﬂsm2a (13)

The velocity and angle integrals are done numerically. Figure 10 shows the flux density to a low-
potential sphere, illustrating the progression from uniform flux a low Mach number to cos O on
the ramward side and zero on the wake side for high Mach number. Figure 11 shows the flux
density to a high-potential sphere, showing that the flux decreases with ion energy (more or less
as [1-V/E]) and is fairly uniform over the sphere, even at realistic Mach numbers. '
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Figure 10. Relative Ion Currents at Low Sphere Potentials.
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Figure 11.Relative Ion Currents at About 100 V in the Ionosphere.

5. SECONDARY AND BACKSCATTERED ELECTRON FLUXES

The secondary and backscattered electron fluxes are computed for each component of the
incident current separately.

The secondary and backscattered electron fluxes due to the Maxwellian components of the
incident electron fluxes (low energy and Fontheim) are computed in the same manner as for a
geosynchronous Maxwellian plasma.

The secondary and backscattered electron fluxes due to the Gaussian and Power Law
components of the incident electron flux are computed by integrating the products of the
distribution functions and the yield functions as is done for the Maxwellian components. The
yield for the Maxwellian and Power Law components is taken to be that for isotropically incident
flux. The yield for the Gaussian component is taken to be that for normally incident flux. The
techniques for doing the integrals are given below.

The secondary electron flux due to the incident ion flux when the incident ion flux is computed
using the analytic orbit limited model is the sum over the species of the integral of the product of
the incident ion flux times the average yield for a cosine theta distribution of ions with an energy

1 . . . . . :
of =MV; —e¢, where M is the ion mass, V, is the ram velocity, and ¢ is the surface potential.

The rate of secondary emission is assumed to be independent of mass (except indirectly through
the incident velocity). If no species are specified on the Environment Tab, the plasma is assumed
to be 100 percent of ions of mass 16 times the proton mass.



The secondary electron flux due to the incident ion flux when the incident ion flux is computed
by particle tracking is the tracked ion current times the yield. The secondary yield is given by a

normally incident ion with kinetic energy of -;—MVOZ —ed , where M is 16 atomic mass units, Vo

is the ram velocity, and ¢ is the surface potential.

6. PARTIAL DENSITIES AND COEFFICIENTS

The partial densities shown on the Environment Tab are given by the expressions below. The
techniques used to compute the average values of the square root of the inverse of the energy are
given in the section on integrals below.

Density,, =mne{ 6%, -:—JI;; < %> (14)

1 E, ) E
Density ,,,, = el A —Z-[A exp[—(—i—) J +E Jn erfc (——A"-)J

gauss (15)
4 /me 1
X — —
eV2 \VE
1 1 1
Density ower = TCCC ower o - o
p P a_l((El) 1 (Ez) ]]
power (16)
4 ,me \/—1-
x_ —
eV2 \VE
The coefficients shown on the Environment Tab are given by the expressions below.
| . :
G =~ 05—
me0,,, (17)
I aAuss
Cgauss = 1 E -_,g E
neA—| Aexp| —| == | |[+E,Jm|1+erf| — 18
2[ xp((A” "‘/—[ ) (Am o
C = E.Eg.‘ie_r.(a_l) 1 _._..:_l_. 3
power e E;x—l E;—l ) (19)
10




7. INTEGRALS

The technique used to compute the average value of the yield or other quantity over the
distribution is given in this section.

7.1  Average Value of Y(E) for Maxwellian

J Eexp(———————E_q)s“’f]dE

(Y)Imx = “'; (20)
J Eexp( E- <I)S““tJdE
0,
max (0,9, )
(If for ions, use Qs rather than -¢gy.)
To compute the numerator use
Normalization
Eexp(—E%d')i“ﬁ-]dE 1)
max(°’¢surf) )
If ¢ ,; >=0,then
1 1
=0[(-68Inu +9,,, )du =-6[(Inu)du + 09, =06 +6¢,, =6 (1+956“—“)
0 0
If ¢,,; <O,then @2)
1
-0 exp( Jj(lnu)du=92
0
7.2 Average Value of Y(E) for Gaussian Term
E-E_. -0, )
J Eexp[-—( gauss ¢surfj JdE
A
<Y>gauss _ 0 (23)

E-E__ -0, )
J Eexp[ gauss ¢surf ] JdE
A
0

11




©o

E+E,_. - : E-E,_ -
Y(E)Eexp[—( £ %m) ]dE ,(substituteu= gauss ¢s“’f) '

A A
max (0,0,.0r) (24)
= f , Y(Au + B + 0ot ) (Au 3 ST )exp(—u2 ) Adu
max(”l-:g"m-—@mrf Es )
A A
Split into three integrals to isolate the peak.
if By + O < 0, the first term in the expansion below is zero and the second term has a
different lower limit, and may also be zero.
-t
Y (Au + By, + 0t )(Au + By + Ot Jexp(—u’)Adu
m( ot )
A
+ [ Y(Au+Egy, + Ot )(Au+Eqy, + 0 )exp(-u*)Adu (25)
-t

3
+ f Y (Au +E s + Ot )(Au +E s T Ot )exp(—u2 )Adu
13
(substitute X = exp(—uz) and take & to be small)
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A E AUSS + q)surf
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2 J ( gauss q)surf ) ( (__ ll'l X J

27)

Normalization
T 2

J Eexp[—[E_Engs -q)surf J ]dE (28)
max (0,0, )

= T (Au +E e + Ops )exp (—u2 ) Adu

o e )
A A
=A? T uexp(—uz)du +A (Egauss + 0t ) T exp(—uz)du
~Eguuss =Osurt ~Eganss ~Egouss ~Osurt ~Egauss
"‘“"(”A—'T} ""”‘(—A‘""T)
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abs| max —Egnllss"¢surf 'Eguuss
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A A

2 E + E 2 _E _
=%_exp[_min( gaussA ¢surf , gaussJ J"’A (Egauss +¢Suﬂ)§erfc[max( gauss ¢surf ,

7.3 Average Value of Y(E) for Power Law:

max(E, By + 0,1 ) I
Y(E)E(E-0,,) " dE
(Y™ =

E(E—0,.)

max(0,E; +.7 )

-0~

dE
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max(E; Ea +Our )

—a-1 1 max(E; —Qyr JEn ) " i max(E;~ Qg /E2) ™"
E(E—q)surf) dE =|{ - I dz_q)surf a J‘ dz (30)

max(0.E, 0,01 =1 man(-00 E)" max (= )

) (_&—1—_1)(111’”‘ (Bz = 0 Eo) ™" —max (=0, E, ) )

1 - —o
_¢surf (a)(max (EZ - ¢surf ! E2 ) —max (—q)surf ’ El ) )

8. VALIDATION OF RESULTS
8.1 Comparison with SEE Spacecraft Charging Handbook

The SEE Spacecraft Charging Handbook gives the following results for a 2 m Kapton cube with
orbital speed of 7500 m/s in the x direction. The charging time is 10 s with 40 timesteps. The
environment is the “DMSP1” environment shown in Figure 13.

Mot Surface Uharaimy

I I & : T MaterialQ  Potential @

01

—— Max

- g-r————————- ——Min
Chassis

+20]

Potential{V]

301

-40-

time[s] @uanunm

i : CEIIETD : spacecrat Name: Jommamed =] 7 Eclipse Environment. [DMSP1 <] Charging Time (s): fiD Timesteps: [40 .
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Figure 12. Auroral Charging Test Case as Computed by SEE Spacecraft Charging Handbook.
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Figure 13. Environment Used for Test Cases.

With a minimum timestep of 0.01 and a maximum timestep of 1 s, the Nascap-2k, Polar,
Analytic Currents, charging model gives the same results. For these parameters, this approach
gives too little charging. The ion currents are overestimated as Debye screening is ignored.

Potential
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<zu"‘-\\~ ——
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£ 4
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3
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Y
5,
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S
50 T T T T
0 2 4 6 8

Time {s]
Figure 14. Results From Nascap-2k Test Case Using Environment Currents.

Doing the same problem, but tracking particles in from a sheath (located at -0.277 V) gives more
charging as expected, since the orbit limited approximation overestimates the ion current. Three
grids were used. The main grid is 24 cubed with a mesh size of 0.8 m. The second grid is also 24
cubed filling the inner eighth of the main grid. The innermost grid is 16 cubed and fills the center
of the grid. The results are shown in Figure 15. The highest potential surfaces are along the front
edge of the side and the lowest in the back. Figure 16 shows the potential contours around the
cube. The cube is moving to the right. Most of the sheath is in the second grid, which has a
sheath potential of -0.277 V.
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Figure 15. Results From Nascap-2k Test Case Using Tracked Ion Currents. The Top Left Surface is on the
Wake Side.

Figure 16. Potential Contours Around Charged Cube with Different Scales.

Repeating the calculation, but computing the charge density using full trajectory ions, gives

somewhat lower potentials. Ions with a thermal distribution (1.0 in x; 0.3, 0.4, 0.3iny; and 0.3,

0.4, 0.3 in z) are tracked from the problem boundaries. The results are shown in Figure 17. The

potentials are similar, although more negative. The highest potential is at the back edge of the -

side.

16




Potential

Mad

Potential [V}
3

A

~ e MirD

- Conductor &4

Time [s]

Figure 17. Results From Nascap-2k Test Case Using Tracked Ion Currents and Self-consistent Charge
Density. The Top Left Surface is on the Wake Side.

There are two significant differences between the calculation shown in Figure 15 and that shown
in Figure 17. The macroparticles tracked are created differently and the charge density is
computed differently. In the first case, mono-energetic ions are tracked from a sheath boundary
at -0.277 V, while in the second case, a thermal distribution is tracked from the problem
boundaries. In the first case the charge density is computed using an analytic formulation and in
the second the charge density is computed from the tracked ions and a barometric relation for the
electrons. To separate these two effects two additional calculations were done. In the first, the
charge density was computed using the analytic formulation and the current computed from a
thermal distribution of ions tracked from the problem boundaries. In the second, the charge
density was computed using ions tracked from the problem boundary, and the current was
computed from ions tracked from a sheath at -0.277 V. The potential time histories are shown in
Figure 18. The tracked ion current collected is shown in Figure 19. In all cases, the collected
current is roughly linear with chassis potential. The highest current gives the least charging. Both
the charge density and the initial macroparticle distribution influence the results. For this
particular problem, it is not clear which approach is more correct.
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Figure 18. Time History of Potentials for Different Charge Density Formulations and Macroparticle Initial
Conditions.
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Figure 19. Collected Current as a Function of Chassis Potential (V) for Different Charge Density
Formulations and Macroparticle Initial Conditions.

At lower densities, the analytic estimation of the ion current should be more accurate. We did the
same calculation with an ambient density two orders of magnitude lower. It is necessary to use a
larger grid, so that the entire sheath fits. Changing the outer grid mesh unit to 5 meters, but
leaving the grid structure the same, gives a large enough grid. The sheath edge is partially in the
outer grid and partially in the second grid. The appropriate sheath potentials are 0.372465 V and .
0.147813 V. The calculations were done using the average sheath potential of 0.277 V. At the
lower density, the charging occurs faster, so we used 50 timesteps, with a minimum of 0.001s
and a maximum of 1 s. The final potentials are shown in Table 1.
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Table 1. Final Potentials in Low Density Case.

Case Potential at 10 s (V)

Tons Space charge Chassis | Maximum | Minimum
Analytic None -1257 -1238 -1313
Sheath Analytic -1148 -997 -1360
Boundary | Self-consistent -2393 -2128 -2596

In the Sheath/Analytic space charge case, the most negative potentials are on the wake side and
the least negative potentials are on the ram side. In the Boundary/Self-consistent space charge
case, the most negative potentials are along the side toward the ram and the least negative
potential is on the center surface of the wake side.

Figure 20 shows sample trajectories for the Sheath/Analytic plasma case. Of the trajectories
shown, the outer four are undisturbed, the inner two are immediately collected, and the rest loop
around the cube one or more times before leaving the computational space.

y

Figure 20. Sample Trajectories for Sheath/Analytic Space Charge Case (Low Density).

Figure 21 shows sample trajectories for the Boundary/Self-consistent plasma case. Of the trajectories
shown, the outer six are undisturbed, the inner four are immediately collected, the seventh from the
top circles a couple of times are then leaves the computational space, and the eighth from the top
provides most of the tangle of trajectory seen before being collected. The trajectories that orbit about
the cube before being collected or leaving the computational space provide Debye shielding that
decreases the ion current, increasing the charging. The algorithm for computing self-consistent
potentials can give potentials that are not as smoothly varying as desired. Better results are often
obtained by sharing the potentials or ion densities from iteration to iteration. The parameters for this
sharing are set on the Space Potentials Tab. In this case, the space potentials have some non-physical
structures that may be numerically reducing the ion energies, leading to higher current collection than
physically correct.
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Figure 21. Sample Trajectories for Boundary/Self-Consistent Case (Low Density).

8.2 Comparison with POLAR Results

To validate Nascap-2k we compare the results obtained using Nascap-2k with those obtained
using POLAR, which has been validated. The POLAR calculations to which we will compare are

given in Reference 1.

We used the POLAR object, which generates some “inconsistent edge” error messages, but is
valid. To create the object, we used Nascap/GEO for Windows to create the object, read the
Nascap/GEO object into DynaPAC, and then read the DynaPAC object into Object Toolkit.

Figure 22. POLAR DMSP Object.

Charging in eclipse from an initial potential of -10 V was computed for a period of 6 s with 45
timesteps varying from 0.0125 s to 0.2 s. In all cases, the charging currents were computed using
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an analytic model for the electrons and tracked ions. The charge density was computed either
analytically or self-consistently with the ion trajectories. In the first case, the ion currents are
computed by tracking macroparticles from the sheath and in the second case by tracking
macroparticles from the boundary of the computational space. The environment used is shown in

Figure 23.
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Figure 23. Environment Used for DMSP Charging Calculations.

The results of the calculations are given in Figure 24 through Figure 31. With these choices for
parameters, the resulting chassis potential for the analytic charge density case is -707 V and for
the self-consistent charge density case is -845 V. In the analytic charge density case the
potentials vary between -414 and -888 V; while in the self-consistent charge density case the
potentials vary between -710 and -1025 V. The distribution of surface potentials is essentially the
same for the two cases, with well-shadowed surfaces the most negative. The chassis rapidly
charges to the -400 to 500 V level and continues to charge at about 50 to 60 V per second. With
more timesteps, the results might be slightly different.
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Figure 25. Resulting Surface Potentials for Case with Self-Consistent Charge Density.
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Figure 26. Time History of Charging with Analytic Charge Density.
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Figure 27. Time History of Charging with Self-Consistent Charge Density.

Several interesting features can be seen in the space potentials. In the analytic space charge case,
the potentials follow the contours of the satellite more closely and the influence of the wake in
the higher potential regions is more pronounced. In the self-consistent space charge case, the
potential falls off a bit faster in the wake, and the sheath edge is much smoother on the ram side.
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Figure 29. Resulting Space Potentials for Case with Self-Consistent Charge Density.
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Figure 31. Resulting Sheath Location for Case with Self-Consistent Charge Density.

These results can be compared with Figure 5 of Reference 1, shown below as Figure 32. The
Nascap-2k results do not have the presumably spurious hump at 0.2 sec. The Nascap-2k results
show more charging and are continuing to charge. The relative charging of the different surfaces
are somewhat different. As the selected surfaces are probably different, no firm conclusions can
be drawn.
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Figure 32. Figure 5 of Reference 1.

We also repeated another set calculations in the same paper. We set the thickness of Teflon to
2.8¢e-3 and changed all the Kapton to Teflon. The results are shown in Figure 33 through Figure
35. These results can be compared with Figure 36 through Figure 38 obtained from POLAR.
Again, the results using the two codes are similar in character. The shaded surfaces are the most
negative and the ram-wake difference is small. Using POLAR, the wake side charges more than
the ram side. Using Nascap-2k, the ram side charges slightly more than the wake side. The
incident ions are focused onto the wake side of the spacecraft.

Potentials
Tivelte -

Figure 33. Resulting Surface Potentials for Case with All Teflon and Self-Consistent Charge Density.
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Figure 34. Resulting Surface Potentials for Case with All Teflon and Self-Consistent Charge Density.
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Figure 35. Time History of Charging with All Teflon and Self-Consistent Charge Density.
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Figure 36. Resulting Surface Potentials Using POLAR for Teflon Only Case From Reference 1.
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Figure 37. Resulting Surface Potentials Using POLAR for Teflon Only Case From Reference 1.
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Figure 38. Time History of Surface Potentials Using POLAR for Teflon Only Case From Reference 1.
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